The Electric Field of CO Tips and Its Relevance for Atomic Force Microscopy.

نویسندگان

  • Michael Ellner
  • Niko Pavliček
  • Pablo Pou
  • Bruno Schuler
  • Nikolaj Moll
  • Gerhard Meyer
  • Leo Gross
  • Rubén Peréz
چکیده

Metal tips decorated with CO molecules have paved the way for an impressively high resolution in atomic force microscopy (AFM). Although Pauli repulsion and the associated CO tilting play a dominant role at short distances, experiments on polar and metallic systems show that electrostatic interactions are necessary to understand the complex contrast observed and its distance evolution. Attempts to describe those interactions in terms of a single electrostatic dipole replacing the tip have led to contradictory statements about its nature and strength. Here, we solve this puzzle with a comprehensive experimental and theoretical characterization of the AFM contrast on Cl vacancies. Our model, based on density functional theory (DFT) calculations, reproduces the complex evolution of the contrast between both the Na cation and Cl anion sites, and the positively charged vacancy as a function of tip height, and highlights the key contribution of electrostatic interactions for tip-sample distances larger than 500 pm. For smaller separations, Pauli repulsion and the associated CO tilting start to dominate the contrast. The electrostatic field of the CO-metal tip can be represented by the superposition of the fields from the metal tip and the CO molecule. The long-range behavior is defined by the metal tip that contributes the field of a dipole with its positive pole at the apex. At short-range, the CO exhibits an opposite field that prevails. The interplay of these fields, with opposite sign and rather different spatial extension, is crucial to describe the contrast evolution as a function of the tip height.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using metallic noncontact atomic force microscope tips for imaging insulators and polar molecules: tip characterization and imaging mechanisms.

We demonstrate that using metallic tips for noncontact atomic force microscopy (NC-AFM) imaging at relatively large (>0.5 nm) tip-surface separations provides a reliable method for studying molecules on insulating surfaces with chemical resolution and greatly reduces the complexity of interpreting experimental data. The experimental NC-AFM imaging and theoretical simulations were carried out fo...

متن کامل

CO tip functionalization inverts atomic force microscopy contrast via short-range electrostatic forces.

We investigate insulating Cu2N islands grown on Cu(100) by means of combined scanning tunneling microscopy and atomic force microscopy with two vastly different tips: a bare metal tip and a CO-terminated tip. We use scanning tunneling microscopy data as proposed by Choi, Ruggiero, and Gupta to unambiguously identify atomic positions. Atomic force microscopy images taken with the two different t...

متن کامل

Force field analysis suggests a lowering of diffusion barriers in atomic manipulation due to presence of STM tip.

We study the physics of atomic manipulation of CO on a Cu(111) surface by combined scanning tunneling microscopy and atomic force microscopy at liquid helium temperatures. In atomic manipulation, an adsorbed atom or molecule is arranged on the surface using the interaction of the adsorbate with substrate and tip. While previous experiments are consistent with a linear superposition model of tip...

متن کامل

Image correction for atomic force microscopy images with functionalized tips

It has been demonstrated that atomic force microscopy imaging with CO-functionalized tips provides unprecedented resolution, yet it is subject to strong image distortions. Here we propose a method to correct for these distortions. The lateral force acting on the tip apex is calculated from three-dimensional maps of the frequency shift signal. Assuming a linear relationship between lateral disto...

متن کامل

Atomic Force Microscopy Application in Biological Research: A Review Study

Atomic force microscopy (AFM) is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 16 3  شماره 

صفحات  -

تاریخ انتشار 2016